Saturday, 20 April 2019

Filtro médio de ponto móvel


Resposta de Freqüência do Filtro de Média Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso. A resposta de impulso de uma média móvel de L é uma média móvel. Uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita We Pode usar a identidade muito útil para escrever a resposta de freqüência como onde temos deixar ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Certas frequências mais elevadas, como pi / 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das frequências mais altas são atenuadas apenas por um factor de cerca de 1/10 (para a média móvel de 16 pontos) ou 1/3 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código de Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) lote (omega , Abs (H4) abs (H8) abs (H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, BerkeleyMoving Average Filter (MA filter) Loading. O filtro de média móvel é um simples filtro Low Pass FIR (Finite Impulse Response) comumente usado para suavizar uma matriz de dados / sinal amostrados. Ele toma M amostras de entrada de cada vez e pegue a média dessas M-amostras e produz um único ponto de saída. É uma estrutura de LPF (Low Pass Filter) muito simples que é útil para cientistas e engenheiros para filtrar o componente ruidoso indesejado dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M) a suavidade da saída aumenta, enquanto que as transições nítidas nos dados são feitas cada vez mais sem corte. Isto implica que este filtro tem excelente resposta no domínio do tempo mas uma resposta de frequência pobre. O filtro MA executa três funções importantes: 1) Toma M pontos de entrada, calcula a média desses pontos M e produz um único ponto de saída 2) Devido à computação / cálculos envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro age como um Filtro de Passagem Baixa (com fraca resposta de domínio de freqüência e uma boa resposta de domínio de tempo). Código Matlab: O código matlab seguinte simula a resposta no domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Time Domain Response: No primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é barulhenta e nosso objetivo é reduzir o ruído. A figura a seguir é a resposta de saída de um filtro de média móvel de 3 pontos. Pode-se deduzir da figura que o filtro de média móvel de 3 pontos não fez muito na filtragem do ruído. Aumentamos os toques do filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é mostrado na próxima figura. Nós aumentamos as derivações para 101 e 501 e podemos observar que mesmo que o ruído seja quase zero, as transições são drasticamente ditas (observe a inclinação em ambos os lados do sinal e compare-as com a transição ideal da parede de tijolo em Nossa entrada). Resposta de Freqüência: A partir da resposta de freqüência pode-se afirmar que o roll-off é muito lento ea atenuação de banda de parada não é boa. Dada esta atenuação de banda de parada, claramente, o filtro de média móvel não pode separar uma banda de freqüências de outra. Como sabemos que um bom desempenho no domínio do tempo resulta em mau desempenho no domínio da freqüência, e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passagem baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: Livros recomendados: Primary SidebarMoving Average Filter Você pode usar O módulo Filtro de média móvel para calcular uma série de médias unilaterais ou bidirecionais em um conjunto de dados, usando um comprimento de janela que você especificar. Depois de definir um filtro que atenda às suas necessidades, você pode aplicá-lo a colunas selecionadas em um conjunto de dados, conectando-o ao módulo Aplicar filtro. O módulo faz todos os cálculos e substitui valores dentro de colunas numéricas com médias móveis correspondentes. Você pode usar a média móvel resultante para traçar e visualizar, como uma nova linha de base suave para modelagem, para calcular variâncias contra cálculos para períodos semelhantes, e assim por diante. Esse tipo de média ajuda a revelar e prever padrões temporais úteis em dados retrospectivos e em tempo real. O tipo mais simples de média móvel começa em alguma amostra da série e usa a média dessa posição mais as n posições anteriores em vez do valor real. (Você pode definir n como quiser.) Quanto maior for o período n no qual a média é calculada, menor será a variação entre os valores. Além disso, à medida que aumenta o número de valores utilizados, menos efeito tem um valor único na média resultante. Uma média móvel pode ser unilateral ou bilateral. Em uma média unilateral, apenas os valores que precedem o valor do índice são usados. Em uma média de dois lados, os valores passados ​​e futuros são usados. Para cenários em que você está lendo dados em fluxo contínuo, as médias móveis cumulativas e ponderadas são particularmente úteis. Uma média móvel cumulativa leva em consideração os pontos anteriores ao período corrente. Você pode pesar todos os pontos de dados igualmente ao calcular a média, ou pode garantir que os valores mais próximos do ponto de dados atual são ponderados mais fortemente. Em uma média móvel ponderada. Todos os pesos devem somar a 1. Em uma média móvel exponencial. As médias consistem em uma cabeça e uma cauda. Que pode ser ponderada. Uma cauda ligeiramente ponderada significa que a cauda segue a cabeça de perto, então a média se comporta como uma média móvel em um curto período de ponderação. Quando os pesos da cauda são mais pesados, a média se comporta mais como uma média móvel simples mais longa. Adicione o módulo Filtro de média móvel à sua experiência. Para Comprimento. Digite um valor de número inteiro positivo que define o tamanho total da janela através da qual o filtro é aplicado. Isso também é chamado de máscara de filtro. Para uma média móvel, o comprimento do filtro determina quantos valores são calculados na média da janela deslizante. Filtros mais longos também são chamados filtros de ordem mais alta e fornecem uma janela de cálculo maior e uma aproximação mais próxima da linha de tendência. Filtros de ordem menor ou menor usam uma janela de cálculo menor e se assemelham mais aos dados originais. Para Tipo. Escolha o tipo de média móvel a ser aplicada. O Azure Machine Learning Studio suporta os seguintes tipos de cálculos de média móvel: Uma média móvel simples (SMA) é calculada como uma média de rolamento não ponderada. As médias móveis triangulares (TMA) são médias duas vezes para uma linha de tendência mais suave. A palavra triangular é derivada da forma dos pesos que são aplicados aos dados, que enfatiza os valores centrais. Uma média móvel exponencial (EMA) dá mais peso aos dados mais recentes. A ponderação cai exponencialmente. Uma média móvel exponencial modificada calcula uma média móvel em execução, onde calcular a média móvel em qualquer ponto considera a média móvel previamente calculada em todos os pontos precedentes. Este método produz uma linha de tendência mais suave. Dado um único ponto e uma média móvel atual, a média móvel cumulativa (CMA) calcula a média móvel no ponto atual. Adicione o conjunto de dados que tem os valores que você deseja calcular uma média móvel e adicione o módulo Aplicar filtro. Conecte o Filtro de Média Móvel à entrada do lado esquerdo de Aplicar Filtro. E conecte o conjunto de dados à entrada do lado direito. No módulo Aplicar filtro, use o seletor de coluna para especificar quais colunas o filtro deve ser aplicado a. Por padrão, o filtro que você criar será aplicado a todas as colunas numéricas, portanto, certifique-se de excluir todas as colunas que não possuem dados apropriados. Execute a experiência. Nesse ponto, para cada conjunto de valores definido pelo parâmetro de comprimento do filtro, o valor atual (ou índice) é substituído pelo valor da média móvel. O Guia de Cientistas e Engenheiros para o Processamento de Sinal Digital Por Steven W. Smith, Ph. D. Como o nome indica, o filtro de média móvel opera fazendo a média de um número de pontos a partir do sinal de entrada para produzir cada ponto no sinal de saída. Na forma de equação, isto é escrito: Onde está o sinal de entrada, é o sinal de saída, e M é o número de pontos na média. Por exemplo, em um filtro de média móvel de 5 pontos, o ponto 80 no sinal de saída é dado por: Como alternativa, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente em torno do ponto de saída: Isto corresponde à alteração da soma em Eq . 15-1 de: j 0 a M -1, para: j - (M -1) / 2 a (M -1) / 2. Por exemplo, em um filtro de média móvel de 10 pontos, o índice, j. Pode variar de 0 a 11 (média de um lado) ou -5 a 5 (média simétrica). A média simétrica requer que M seja um número ímpar. A programação é ligeiramente mais fácil com os pontos de apenas um lado no entanto, isso produz uma mudança relativa entre os sinais de entrada e saída. Você deve reconhecer que o filtro de média móvel é uma convolução usando um kernel de filtro muito simples. Por exemplo, um filtro de 5 pontos tem o kernel do filtro: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Ou seja, o filtro de média móvel é uma convolução Do sinal de entrada com um impulso retangular com uma área de um. A Tabela 15-1 mostra um programa para implementar o filtro de média móvel. Filtro de média móvel simples Esta página descreve o filtro de média móvel simples. Esta página faz parte da seção sobre Filtragem que faz parte de Um Guia para Detecção e Diagnóstico de Falhas .. Visão Geral O filtro de média móvel simples faz a média dos valores recentes da entrada do filtro para um dado número de entradas. Este é o exemplo mais comum da categoria de filtros de 8220moving average 8221 (MA), também chamado filtros de resposta de impulso finito (FIR). Cada entrada recente é multiplicada por um coeficiente para todos os filtros MA lineares, e os coeficientes são todos iguais para esta média móvel simples. A soma dos coeficientes é 1,0, de modo que a saída eventualmente coincide com a entrada quando a entrada não muda. Sua saída apenas depende de entradas recentes, ao contrário do filtro exponencial que também reutiliza sua saída anterior. O único parâmetro é o número de pontos na média - o 8220window size8221. Movendo a resposta de passo média Como qualquer filtro de MA, ele completa uma resposta de passo em um tempo finito, dependendo do tamanho da janela: Este exemplo simples de média móvel acima foi baseado em 9 pontos. Sob hipóteses modestas, está fornecendo a estimativa (suavização) ideal para um valor no ponto médio do intervalo de tempo, neste caso, 4.5 intervalos de amostra no passado. Copyright 2018 - 2017, Greg Stanley

No comments:

Post a Comment